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| B SELF-CONSISTENT THEORY OF CYCLOTRON MASER INSTABILITY FOR

INTENSE HOLLOW ELECTRON BEAMS
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University of Maryland, College Park, Maryland 20742

; : .

B ] Ronald C. Davidson

: Division of Magnetic Fusion Energy

E | Department of Energy, Washington, D. C. 20545

K. R. Chu
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Naval Research Laboratory, Washington, D. C. 20375

This paper develops a self-consistent theory of the cyclotron
maser instability, assuming azimuthally symmetric perturbations about
a slowly rotating hollow electron beam propagating parallel to a uniform

A

axial magnetic field Boez. The stability analysis is carried out within

the framework of the linearized Vlasov-Maxwell equations. It is assumed

that the beam is thin with radial thickness (2a) much smaller than the ]
beam radius (RO)’ and that w2/m2<<1, where w_and w_ are the electron

P c P c
plasma frequency and electron cyclotron frequency, respectively, in a

frame of reference moving with the beam axial velocity cBb. The analysis

is carried out for the specific choice of equilibrium electron distribu-

tion function in which all electrons have the same value of canonical

angular momentum and the same value of energy in a frame of reference
moving with axial velocity cBb. Stability properties are investigated
including the important influence of finite radial geometry, finite beam
temperature, and transverse magnetic perturbations (§B#0). It is shown

that instability exists for a very narrow range of axial wavenumbers

satisfying |k-B8, w/c|<<1/R,. Detailed stability properties are calculated
b 0

for a variety of system parameters.

*
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I. INTRODUCTION

There is a growing literature on the equilibriuml-a and stabilitys.l8

properties of intense hollow electron beams, including the recent experimental

studies of basic stability properties,19 plasma confinement schemes

such as Astron,20 high~power microwave generation,n—z5 and electron

ring accelerators.zs Three of the basic instabilities that occur

5,6,19 th

in a hollow electron beam are the diocotron instability, e

8-11,21-24

electron cyclotron maser instability, and the negative-mass

12-18,25

instability. The negative-mass instability, which is an important

instability for a fast rotational equilibrium, is associated with
azimuthal charge bunching. On the other hand, the electron cyclotron

8-11,21-24 which is a dominant instability for a slow

maser instability,
rotational equilibrium, is present even for azimuthally symmetric pertur-
bations with 3/36=0. However, the physical mechenism9 €for the cyclotron
maser instability is similar to that for the negative-mass :I.nst:abilit:y,]"'-18
with radial charge clumping dominating for 2=0. Here % is the azimuthal
harmonic number. The free energy for driving the inétability is

associated with the transverse energy spread of the beam electroms.

This paper develops a self-consistent theory of the cyclotron maser
instability for azimuthally symmetric perturbations about an intense
hollow beam equilibrium. The analysis is carried out within the framework
of the Vlasov-Maxwell equations for an infinitely long beam propagating
parallel to a uniform magnetic field Boéz with axial velocity Vbéz
(Fig. 1). The pos?*ive ions form an immobile (mi+-) partially neutralizing
background. In addition, we assume that the electron beam is thin [Eq. (1)],
i.e., the radial thickness (2a) is small in comparison with the mean

radius (Ro). It is also assumed that m:<<w§, where wp and w, are the

clcctrop p%:f-n frequency and electron cyclotron frequency, respectively,




in a frame of reference moving with axial velocity Vb' Equilibrium and
stability properties are calculated for the specific choice of equilibrium

electron distribution function [Eq. (8)1],

R
0 "0
fe(H’Pe’pz) = 2 6(U)6(Pe-P0) r
2wmybyo

where H is the energy, P, is the canonical angular momentum, P, is

]
the axial momentum, UEH-Bbcpz-yomczlyb is an effective energy
variable, and ngs Rys Ygs Yy Bb and P0 are constants. Equilibrium
properties are examined in Sec. II. One of the important features of
the analysis is that the equilibrium distribution function in Eq. (8)

corresponds to a sharp-boundary density profile [Eq. (17)], with uniform

axial velocity over the beam cross section [Eq. (18)], and nonzero axial
and radial beam temperatures [Eq. (21)].

Stability properties are investigated in Secs. III and IV, including
the important influence of (a) finite axial and radial temperature,
which limits the unstable range of k-values to a narrow bandwidth
(Appendix C), (b) finite radial geometry and the presence of a grounded
conducting wall at radius r-Rc, and (c) the influence of transverse
magnetic perturbations (62#0). As shown in Sec. III, the most unstable
perturbation is the TE mode with axial wavenumber k=8bw/c. Here w is
the eigenfrequency, and cebEVb is the axial velocity of the beam.

The stability analysis predicts instability for a very narrow range

of k values corresponding to |kc-8bm|<<c/Ro (Appendix C). In this context,

the TE mode dispersion relation can be approximated by [Eq. (71)]

2
v(w=kyV,) [1 By (w-kyV,) ]
)

~2 o d
P (b_+b ) +(v-w )[—— (b_+b )} = -
- O 07 ldw ‘7= - Fa 3(w=k, V. =a_/vy,)
wgs kg YbyoRo(w KoV mc/Yb 0b ¢ 'b

for ke=gyw. Here, St-[b:] . are the normalized magnetic wave

w
0’70 %

admittances defined in Appendix B, v is Budker's parameter, pz-wg/cz- g,

805(73-1)1/2/70, and (mo,ko) is defined in Eq. (66). A detailed

numerical analysis of the dispersion relation (71) is carried out in Sec. IV.
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It is found that the geometric configuration (ﬁ_+ﬁ+) and electron density
(v) have a strong influence of stability behavior. For low beam densities,
instability exists only for ($_+ﬁ+)30.

As a comparison with previous analyses,21 it is instructive to

3 | | consider the limit of a very tenuous (v/yo+0), infinitesimally thin

(a/R0+O) beam. In this case, Eq. (71) can be approximated by [Eq. (69)]

2 2 2 2
Al T [J1(gnRo/R)) [ Ca=kvy) - Aghei)
& 8, % [Re72(@0n) (0=kVy—u /v;,) 3(w-kvb—mc/Yb)2

where %0n is the nth root of Jl(aon)-o and Jz(x) is the Bessel function

of the first kind of order 2. The general features of Eq. (69)

are qualitatively similar to the dispersion relation obtained by
Friedman et al.21 for perturbations about a self-consistent Vlasov

0 2
equilibrium, fe-const.XG(HL-yomc )G(pz-ymebC)G(Pe-Po), where all

electrons have the same perpendicular energy Hl-yomc . However,
Eq. (69) differs in detail as do the corresponding stability
results. For example, the final term on the right-hand side of

Eq. (69) is proportional to Bg(w-kvb)2/3, instead of Bg(mz—kzcz)/z

as obtained in Ref. 21. Moreover, in the previous study,21 the

I ——

system can be unstable for a broad range of axial wavenumbers whereas

the present stability analysis predicts a narrow band of unstable k-

values.




II. EQUILIBRIUM THEORY

A. Equilibrium Configuration and Basic Assumptions

The equilibrium configuration is illustrated in Fig. 1. It
consists of a nonneutral hollow electron beam that is infinite
in axial extent and aligned parallel to a uniform applied magnetic
field Boéz. The mean radius of the electron beam is denoted by Ro
and a grounded cylindrical conducting wall is located at radius r-Rc.
The applied magnetic field provides radial confinement of the electrons,
and the radial thickness of the electron beam is denoted by 2a.
As shown in Fig. 1, we introduce cylindrical polar coordinates (r,8,z)
with z-axis coinciding with the axis of symmetry; r is the radial
distance from the z-axis, and & is the polar angle in a plane perpendicular
to the z-axis. The electron charge is partially neutralized by a
positive ion background.

The following are the main assumptions pertaining to the equilibrium
configuration:

(a) Equilibrium properties are independent of z (3/32=0) and
azimuthally symmetric (3/36=0) about the z-axis.

(b) The mean canonical angular momentum of the electrons is
negative, which corresponds to a slow rotational equilibrium.4’6
The positive ions form an immobile (mi¢~), partially neutralizing
background.

(c) The radial thickness of the electron beam is much smaller than

the beam radius, i.e.,
a<<Ro o (1)

(d) It is further assumed that
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6
v a 2 2
- = 2% (v =1)/y, , (2)
Yo Ro 0 0
where v-Neezlmc2 is Budker's parameter,
R2 .
N =27 f dr r n (r) (3)
e e
By

is the number of electrons per unit axial length, ng(r) is the equilibrium

electron density, c is the speed of light in vacuo, -e and m are the

s

charge and rest mass, respectively, of an electron, and Yomc2 is the
electron energy in a frame of reference moving with the mean axial
velocity vﬂéz of the electron beam. In Eq. (3), R1 and R2 denote the
inner and outer radii, respectively, of the beam. The inequality

in Eq. (2) can be expressed in an alternate form. For a thin beam,
from Eq. (3), the average electron density ng is approximately
no=Ne/(4nRoa). Combining this result with Eq. (16), Eq. (2) can be
expressed as

mi/mi<<l (4)

where mp-(éﬂnoezlyom)llz and mc-eBO/yomc are the electron plasma
frequency and electron cyclotron frequency, respectively, in a
frame of reference moving with axial velocity Vb'

(e) Consistent with the low-density assumption in Eqs. (2) and
(4), we neglect the influence of the small equilibrium self-electric
field Ei(r)ér and self-magnetic field Bg(r)ée+B:(r)éz that are produced

by the lack of equilibrium charge and current neutrality.

N i A e

B. Hollow Beam Equilibrium Properties

Central to a description of steady-state Vlasov equilibria

are the single-particle constants of the motion in the equilibrium
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field configuration. For azimuthally symmetric equilibria with
3/36=0=3/3z, there are three single-particle constants of the motion.

These are the total energy H,

2)1/2

H=ymc =(m c +c R (5)
the canonical angular momentum Pe,
Pe=r[pe-(e/2c)rBo] . (6)
and the axial canonical momentum Pz,
B,=p, » )

where the equilibrium-self-fields have been neglected in comparison
with the external magnetic field BOéz [see Eqs. (2) and (4) and Assumption
(e)]. In Egs. (5) - (7), lower case p denotes mechanical momentum.

Any distribution function that is a function only of the single-
particle constants of the motion satisfies the steady-state Vlasov
equation (3/3t=0). For present purposes, we assume an equilibrium

distribution function of the formf

n.R
P) = ——°—‘2’— (VSRR , (8)

fg(H p
anybyo

el

2
where n,=const. is the electron density at r=R;, POE-(e/Zc)(Ro-az)Bo'

const. is the canonical angular momentum of the electroms,
U=H-B8, cp_~ ch/ (9
Pz Y0 b

is an effective energy variable, Bb-const. is defined by Bb-vb/c-
2 sy 1/2

(yb-l) /yb, and Yo and Y, are constants. In the

subsequent analysis, it is shown that the axial velocity profile

associated with Eq. (8) is uniform over the beam cross~-section,
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with Vg(r)-Bbc. Furthermore, since all of the electrons have the same
canonical angular momentum Pe-PO#O, no electrons pass through the

axis of symmetry (r=0), and the equilibrium electron density profile
ng(r) Idapf0 calculated from Eq. (8) corresponds to a hollow electron
beam.

Several pertinent equilibrium properties can be deduced for the
class of thin-beam equilibria described by Eq. (8). For this purpose,
it is useful to transform the energy variable U defined in Eq. (9)
from momentum variables (pr,pe,pz) appropriate to the laboratory
frame to momentum variables (p;, pé, p;) appropriate to a frame of
reference moving with velocity Bbcéz (the mean arial velocity of the

electron beam). Here éz is a unit vector in the z-direction. The

relevant transformation4 is given by

P.=Pl» Pg=Pg» P,=Y, P +Y v'mb c, y=y, (y'+8,p /mc) , (10)
and
U= (Y'-Yo)mc2 ; (11)
Y
b
where Y-(l+22/ c )l/2 and Yy =(1+R / 2 < 1/2. After some straight-

forward algebra it follows from Eqs. (8)-(11l) that f2d3p transforms

according to

] ]
By 358 _BgRo(¥'+6;,p, /mc)
el el 2mmy Y

6(y'mc2-yomc )G(P Po)d Do
(12)

where d3p-dprdpedpz and d3p'-dp;dpédp;. It is evident from Eq. (12)

that Yomczsconst. can be identified with the total electron energy in

a frame of reference moving with axial velocity Bbc. On the other

hand, since the constant Yy is defined in terms of Bb by Bb-(yb-l)llzl Yp
[cf., discussion following Eq. (9)], it follows that Ypme -(1 32) 1/2 2




b , is the energy associated solely with the directed axial motiom B, c
(i.e., the energy calculated for pr=pe=p;=0).
For a thin-beam equilibrium consistent with Eq. (1), the energy

i variable Y'mc2 in Eq. (12) can be approximated by

E | Y mcz-c(m c2+m2 2 s )1/2 (13)
t
where use has been made of P PO’ p is defined by
1 1 p=1‘—R0 ’ {(14)

&caeB /mc is the nonrelativistic electron cyclotron frequency, and

'2=p +p Substituting Eq. (13) into Eq. (12), and representing

© 27
Jd p'.J dpéjo daJ: dpypy »

-—00

it is straightforward to show that the electron density profile can

be expressed as

R

3 .0 0 2 2
pfe(H,Pe,Pz)=no-;; 8(a"-p") , (15)

ng(r)-fd

where

1/2
e/i c

as(yo—l) (16)

is the half-thickness of the beam, and ®(x) is the Heaviside step
function defined by

! 0 o
i ! 8(x) =

1 s x>0 .

From Eq. (16), we note that the thin-beam assumption (a<<Ro) is equivalent

to the requirement y§<<1+w2R2/c2. Since the electron beam is assumed

to be thin, we approximate RO/r=1 in Eq. (15), and the electron density

profile reduces to
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n, , |r-R.|<a,
ng(r)s{ 0 0 ; (17)
o, otherwise

Making use of vz=pz/mm=(p;/m+y'Bbc)/(y'+6bp;/mc), we obtain the
axial velocity profile

0 3 0 3 .0
W= ([a%v, £/ ([t o

=Bbc=Vb=const.,
for |r-Ro|<a. That is, the axial velocity profile is uniform over
the beam cross section. In a similar manner, the azimuthal velocity

f‘ profile associated with the equilibrium distribution function in Eq. (&)

can be expressed as

vg(r>-(jd3pvaf2)/<fd3pf2)

P
= 1m<-}g+%r30>.
Yb¥0

Making use of Poa-e(Rg—az)BO/ZC [definition following Eq. (8)] and the

thin-beam assumption (a<<R0), the preceding expression for Vg(r)

P s

can be approximated by

V() = 9 p=—0 (19)

L b
bt .

L i e G oA

for |r-R|<a.

Finally, for the equilibrium distribution function in Eq. (8),

the radial and axial elements of the electron pressure tensor are defined
g | by
0 0 3 0
P (r)=T (r)n_(r) Jd pv p £ (H,Pg,P )
g (20)

: Pzz<r>=T2(r)ng(r)-jd3p(vz-vb)(pz-sz>f2(u,re,pz) ;

where Bz-(fd3p P, fg)/(jd3p f2)= vrtpr/ym, and Tg(r) and Tg(r) are the




effective radial and axial electron temperature profiles, respectively.
Substituting Eq. (12) into Eq. (20), it is straightforward to show that
A2

m w
C

202
By, &) (21)

R
Tr(-) Tz(r)

for |r-R0|<a. Furthermore, the off-diagonal elements of the equilibrium
pressure tensor are identically zero, i.e., Prz(r)aPzr(r)=0.

The self-consistent electron density and temperature profiles
are illustrated in Fig. 2 for a thin-beam equilibrium. Evidently, for
the choice of equilibrium distribution function in Eq. (8), the

electron density profile ng(r) is rectangular with sharp radial boundaries

[Eq. (17)], the axial velocity profile VS(r)-Bbc is uniform over the

beam cross section [Eq. (18)], the azimuthal velocity profile Vg(r)=
mcplyb varies linearly over the beam cross section [Eq. (19)],

and the radial and axial temperature profiles are parabolic [Eq. (21)].
Further equilibrium properties of intense hollow beam equilibria

described by Eq. (8) are discussed in more detail in Ref. 4.




III. STABILITY PROPERTIES FOR AZIMUTHALLY SYMMETRIC PERTURBATIONS

% 12
|

A. Linearized Vlasov-Maxwell Equations

In this section, we make use of the linearized Vlasov-Maxwell
equations to investigate stability properties for azimuthally symmetric
perturbations (3/36=0) about the thin, hollow-beam equilibrium described
by Eq. (8). We adopt a normal-mode approach in which all perturbations

are assumed to vary with time according to
89 (%, )=V (o) exp{~tut} ,

with Imw>0. The Maxwell equations for the perturbed electric and

magnetic fields can be expressed as

Phpt 25w

(22)
78 ,ic!. Jx-1 = E® ,
where
J0p=-e[a’p ¥ £ R (23)
is the perturbed current density. In Eq. (23),
Ee(g,g)-effa dr exp{-iwt} {g(g')4-x'x§(¥')}. :R' fg (24)

is the perturbed distribution function, t=t'-t, and the particle
trajectories x'(t') and R'(t") satisfy d&'/dt'-g' and dg'/dt'-

-ex'XBogz/c, with "initial" conditions E'(t'-t)-ﬁ and g'(t'-t)-g.
To make the theoretical analysis tractable, we Fourier decompose

the z-dependence of all perturbed quantities according to
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@(g)-fdk@k(r)exp{ikz} (25)

where k is the axial wavenumber. Note that the perturbation amplitudes
in Eq. (25) are independent of 6, because the present stability
analysis is restricted to azimuthally symmetric perturbations (2=0,
where 2 is the azimuthal harmonic number). Making use of Eqs. (22)

and (24), it is straightforward to show that

2
B, -2 =T () (26)

where

Py A f el (27)

and the function ¢(r) is defined by
¢(r)EirEek(r) 5 (28)
Equation (26) can be expressed as

B _(r >=-L $(x) (29)

ar 2r

in the vacuum region outside the beam, where 3ek(r)=0.

The perturbed azimuthal electric field ﬁek(r) is continuous
across the beam boundaries (r-R1 and r-Rz), as is the function ¢(r)
defined in Eq. (28). For azimuthally symmetric perturbationms,

it can be shown that (Appendix A)
'Ro(3¢/3r)ao|§°[¢(Ro)] (30)

where O[a(Ro)] denotes terms of order $(R0). Integrating Eq. (26)

from r-Rl-G to r-R2+6 and taking the limit 5+0+, we obtain the

approximate result17

e s T - 4
sz(RZ) -sz(Rl). TR
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where W(R ) denotes lim j_a), and use has been made of Eqs. (1)
6*0
and (30).

Similarly, from Eq. (22), we obtain
3_ B MM EE =213 () (32)
5t [TBgk Bk sk 2/ -

Making use of the continuity of ﬁzk(r) at r-R1 and r-Rz, and the

inequality lRo(aEzklar)RDkO[Ezk(Ro)], it is straightforward to show
that
+
A + 2 - _ 4 RZ 2
RZBek(RZ)-RlBek(Rl)"?? IR- dr r J . () , (33)
1
where again use has been made of a/Ro<<l. Substituting

a i 9
B =7 lo 5 B, (0)-4rk]_ (1)] (34)

into Eq. (33) gives

5 (aEzk) : (3E ”
2 \dr R+ R1 Jr
2

2 )Rl g {k[R J (B Py R I &)1

+

2 R A

- 15 J dr t § (r)} . (35)

R zk
1

Since the perturbed radial current density vanishes outside the beam,

we note that 3rk(kz)'3rk(R;)-o' Therefore Eq. (35) can be expressed as
+

3E 3F
BT % e zk b __JL_
- (ar )R+ Rl(ar >R- i jn dr r 3, (0) .
2 1 1 (36)

For convenience, in the subsequent analysis we introduce the
normalized electric and magnetic wave admittances, i d and b

defined at the inner and outer surfaces of the electron beam by
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dw"[r(a/ar)ézk(r)]R+/izk(R2) .
2 (37)
d_=[r(3/an)E, (r)] /B (R) ,
R

and 1

b+._§zk(g;>/[rca/ar)ﬁzk<r)1R2 .

R

For a beam in vacuum, the values of b_ and d_ depend in detail on the

(38)
b_=B,, (R))/[r(3/01)B_, (r)]

geometric configuration, e.g., location of the conducting wall
(Appen&ix B). It should be noted from Egs. (22) and (25) that there
are two main classes of perturbed fields, i.e., TE and TM perturbatioms.
For the TE mode, the perturbed radial and axial magnetic fields

(Brk and ﬁzk) can be expressed as functions of the perturbed azimuthal

electric field ﬁak' On the other hand, for the TM mode, grk and

It is therefore convenient to

-

B_, can be expressed in terms of ﬁz

ok k"
express the right-hand side of Eqs. (31) and (36) as
+

R
4w 2 A 5 A
x [R_ dr 3, (D)mxg, (@) dROHR x , (WE R

. A (39)
R

4m 2 5 2 &

4m” JR_ ar T 5 () [xyy (@) /R IR -1x,, E_ (R)
1

where the matrix elements xij(w) denote effective susceptibilities.16'17
Making use of Eqs. (29)-(39), it is straightforward to obtain the

approximate results

(b_#b )3 (Rp)=x, ; () (R )HRx,, WE_, (Ry)
(40)
(d_+d)E_, (R)=1[x,; (@) /Ry1G(Ry)+Xyp (WE,, (R) -
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After some simple algebraic manipulation that makes use of Eq. (40),
the dispersion relation for azimuthally symmetric perturbations can be

expressed as
[b_+b, ~x; 5 () 1[d_+d, =Xy (@) Fxy 5 (@) x5, (0)=0 . (41)

Evidently, an explicit evaluation of the susceptibilities xij(w)

is required for a detailed stability analysis.

B. TE Mode Dispersion Relation

In this section, closed expressions are obtained for the relevant
electron susceptibilities [Eq. (39)], and the results are used to
derive a simplified TE mode dispersion relation. We specialize

to the case of a self-consistent Vlasov equilibrium in which all

electrons have the same canonical angular momentum and the same total
energy in the moving frame [Eqs. (8) and (12)]. To simplify the
right-hand side of Eq. (24), use is made of Eqs. (6) and (9), and

the identities aU/aB-x-Vﬁgz and aPB/ape-r%e, where £o is a unit vector
in the 6-direction. The perturbed distribution function can then be

expressed as

%ek(r,g)-fzk(r,g)*-?gk(r.g) ,

where

0
& kv i of
fik(t,g)-ejf” drexp {i[k(z'-2)-wt]} g(l-—;h) Eek(r')vs Eﬁs
(42)

' e TE. U afg
i [(1°T) Bo(t') =T By (r >] EX i

is that portion of the perturbed distribution function that is generated

from the TE perturbation, and
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3 3 260 (0 . :
é ‘, ftk(r,g)-e 355 I-o dt exp{i[k(z'-z)-mr]}{[Erk(r')-BbBek(r')]v;
I (43)
E ‘

; 1 < +ﬁzk(r') (V;-Vb) }

; , is that portion of gek that is generated from the TM perturbation.
.VI As indicated in Eqs. (42) and (43), the particle trajectories,
r'(t), 8'(x), z'(1t), in the equilibrium field configuration are required
in order to evaluate the perturbed distribution function. Making use
of Eqs. (5) and (6), and Pe-Po--(e/Zc)(Rg—az)Bo [see discussion following

Eq. (8)], it is straightforward to obtain the required trajectories.

Assuming that the electron orbit passes through the phase-space

point (o.pr) and (z,pz) at time t'=t, we find

p'-pcos(&cly)r+(pr/m;c)81n(;c/Y)T >

z'-z+(pz/7m)1 - (44)
5'-(&c/yRo) [pcos(;c/Y)r+(pr/m43c)sin(&clv)r] "

where p-r-Ro, ;C-eBo/mc is the nonrelativistic electron cyclotron
frequency and use has been made of Eq. (1).
From Eqs. (39) and (42), the matrix element xll(w) is

determined from
+

(@3 (R)) =278 "2 5 (0 (45) J
X11 (06 (R, czpzklrek" |

where the perturbed azimuthal current density corresponding to the i

TE mode is defined by

3

“E sB i
Jek(r)--efd PV, fek(r,g) . (46) g
|

For present purposes it is also assumed that
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lw-kV, - /v, |<<w /v, (47)

| - where wc-eBo/yomc is the electron cyclotron frequency in a frame of

reference moving with axial velocity Vb. Within the context of Eqs.

| (1), (30), and (47) it is valid to approximate

O L PR P 1yed
¢(xr")=1ir'Eg, (r')=¢(Rj) (48)
and to neglect the terms proportional to 8f2/8Pe in Eq. (42), since the

b

| 9 corrections associated with these terms are of order Yblw-kV -mc/YbI/mc,
a/R0 (<<1), or smaller. Substituting Eq. (48) into Eq. (42), the Q

perturbed distribution function in Eq. (42) can then be approximated by

8 i kv, afg 0 :
3 £ p— - —— — A 7— -
fek(r,g) ie |1 - ) 30 [-a dt 0' exp{i[k(z’-z)-wt]} (49)
l
where use has been made uf vg-r'é'. Since the variable U is an even i

function of P, [Eq. (9)], we note from Eqs. (46) and (49) that any
portion of the time integral in Eq. (49) that is an odd function of

P, will automatically give zero when the integration over P, is

carried out. Therefore, we simply omit terms proportiomal to odd
functions of P, when calculating fzk from Eq. (49). Making use of
Eqs. (44) and (47), the perturbed distribution function for the

TE mode is given by

S———

OAA
(1 ka> Sfe wc¢(R0)

T S W " (50)

2E - &0
fek(r’«e) 2R

0 Ym—mc-kpz/m

where wc-eBO/mc.

The integral [d3p A %Ek is required to evaluate the perturbed
azimuthal current density. For a thin, hollow beam, we note from

Eq. (44) that ve-ré can be approximated by

\ p&c/y . (51)
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Substituting Eqs. (8), (50), and (51) into Eq. (46), making use of
the transformations in Eq. (10), and carrying out the required

integration over momentum, the perturbed azimuthal current density

corresponding to the TE mode can be expressed as

2. .2
e n.p kv,
3 Wfpotar. e 4 §(p-a)+8(p+a)
Jgk(r) ZYbYOmRO ( w ) ¢(R0); a(w-ka-mc/Yb)

(52)

2 2 2 a2
w e [(w=kV,) (w=kV, -0 /v, )- (B, ~ke)“]@(a"~p") i
2 2 2 i
[cz(w-kvb-wc/vb) -(wBb-kC) mi(a -02)]3/2
where wc-eBOIYOmc is the electron cyclotron frequency in the moving

frame. Substituting Eq. (52) into Eq. (45), we find

- (w—ka)z c[ﬂ-(kc-mﬁb)zl(w-kvb)]
.- 2_(kc-uby)

Xqq (w) =

11 b czpz(kc-me)ZRO
(53)
r e + wca(kc - wBb) 1

xln[. c@ - w alke - wB,) J '

where w:-knnoezlyom is the electron plasma frequency squared in the moving

frame, and Q@ is the Doppler shifted frequency defined by

The following point of verification is noteworthy. If instead

we make use of the equilibrium distribution function (characterized

0.
by Vz 0)

n.R
0 . P
fe(H’Pe) 2wy°m

2
1) (H-Yomc )8(P e-Po) ’
and then make the appropriate relativistic transformation to a
frame of reference moving with axial velocity -Bbcéz, then the
expression obtained for xll(”) is identical to Eq. (53).

Following similar algebraic manipulations, we have evaluated

the remaining susceptibility matrix elements X125 X21° and X2
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However, after some straightforward but tedious algebra, it is found

that
X21 X22 Q a
X s X v o s 'R— <1, (55)
11 11 ce 0

Therefore, within the context of the inequalities in Eq. (55), the

TE mode dispersion relation obtained from Eq. (41) can be approximated

by

In Sec. IV, we make use of the approximate dispersion relation in
Eq. (56) to investigate TE mode stability properties for azimuthally
symmetric perturbations about the hollow-beam equilibrium described

by Eq. (8).
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IV. TE MODE STABILITY ANALYSIS FOR AZIMUTHALLY SYMMETRIC PERTURBATIONS

Within the context of Eq. (55), the TE mode is the dominant
unstable perturbation. In this section, we make use of Eqs. (53)

and (56) to investigate TE mode stability properties in parameter

regimes of experimental interest.n-z4

The number of electrons per unit axial length can be expressed as

Ne-AﬂnoaRO. Eliminating n, in favor of N, in Eq. (53) and substituting

0
Eq. (53) into Eq. (56), the TE mode dispersion relation is given by
2 2
(w-kV, ) (0= (ke-wB,) "/ (w=kV,) ]

b +b, =
* Ty pZR(z)(k.c-me)2
i [Q"’BO (II:C-(DBb)
Q-Bo( C‘Q)Bb)

{57)

where vENeez/mc2 is Budker's parameter, 805(1-1/73)1/2, and use has been

made of Eq. (16). The growth rate W, =Tmw and real oscillation

frequency wr-Rem can be determined from Eq. (57) for a broad range

of system parameter, by solving numerically the full transcendental
dispersion relation. We reiterate that Eq. (57) is valid only when
IQI-Im-ka—mc/Yb|<<mc/Yb [Eq. (47)]. Moreover, it should be noted

that the magnetic wave admittances bt defined in Eq. (B.3) are generally

complicated functions of the eigenfrequency m-wr+iwi.
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A. Limit of a Tenuous, Infinitesimally Thin Beam

To simplify the expressions for the magnetic wave admittances
b, defined in Eq. (B.3), it is useful to consider the limit where the

electron beam is infinitesimally thin,

a/R0+0 2 (58)
and the beam density is very tenuous, i.e.,
v/yo+0 5 (59)

Making use of Eq. (58), it is straightforward to show from Eq. (B.3)
in Appendix B that b_+b+ can be approximated by
23, (pR ) /ﬂszg
P4 = T (R [3,(BRIN (PR ) =3 (PRON (PR )] *

where p2=m2 cz-kz,

(60)

Jl(x) and Nl(x) are Bessel functions of first and second
kind, respectively, and use has been made of No(x)Jl(x)—Jo(x)Nl(x)=2/wx.

In the absence of a beam, the vacuum TE mode dispersion relation is

given by
2.2 L RN Ay L)
P Rc (w™/c"=k )Rc agy (61)
where %90 is the nth root of Jl(aon)-O. For a very tenuous beam

[Eq. (59)], it is evident from Egs. (57) and (60) that Eq. (61) is

a good approximation to the dispersion relation in Eq. (57). [The

right-hand side of Eq. (57) describes the beam-produced modifications

to the vacuum dispersion relation (61).] Taylor expanding Eq. (60)

2, % cd a2 2

about (w /c"-k )Rc'uon, it is straightforward to show that b_+b+ can

be approximated in leading order by

2 v
B
- T4 2 \R c2 Rg Jl(aonRo/Rc)

(62)
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Substituting Eq. (62) into Egq. (57),

dispersion relation
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we obtain the approximate

2 \2 = 2
W 2 _ %om _ 2y 91 (apaRo /R <“ kY )
c2 R2 Y4 Yo l Rch(uon) : ke-wB,
Cc
2 3 (63)
Q-(kc-me) /(w-ka) Q+Bo(kc-w8b)
x 11 - n
ZBo(kc—me) Lﬂ—Bo(kc-wBb)

for a tenuous, infinitesimally thin beam.

To lowest order, the eigenfrequency w and axial wavenumber k are

obtained from the simultaneous solution of Eq. (61) (the vacuum TE

mode dispersion relation) and the condition for cyclotron resonance

[Eq. (47)]

m=kVB+mc/Yb :

(64)

In addition, as shown in Appendix C, the region of k space corresponding

to instability is very narrow-band with

kc=me ‘

(65)

Solving Eqs. (64) and (65) for the characteristic frequency and wavenumber

(w,k)E(wo,ko), we find (Fig. 3)
Yo eTp

ko=w YpBy/C

where use has been made of yb=(1—B§)_1/2.

(66)

Since, for a very tenuous

beam, we also require that (mo,ko) solve Eq. (61) in leading order,

it follows that instability exists only in the narrow region of

parameter space satisfying
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W o
e On
= (67)

This feature is also evident from the numerical studies of the dispersion

relation presented in Sec. IV.B. Finally, for future reference,

it should be noted from Eqs. (61) and (65) that the group velocity

can be :zpproximated by

2
dw _ ke _
gl el T T (68)

v
That is, for a very tenuous beam, the group velocity of the unstzble
waves is approximately equal to the beam velocity.
Appendix C and the previous paragraph give some useful insight
into the region of parameter space corresponding to instability.
Most important is the fact that the instability is narrow-band
in k-space with |kc-w6b|<<c/Ro [Appendix C and Eq. (65)]. Expanding
the logarithmic contribution for small Ikc-wﬁbl, the dispersion relation

in Eq. (63) can be expressed in the approximate form

2 . 2

8.2 Sew [Jl(“OnRo/ Rc)] [“"kvb
. Ri Yo L RJIp(ag,) wkVy-w /v,

(69)

2 2
: Bo(w-ka) }
2 b

3(w-ka—wc/Yb)

2.1/2
g

similar to the result obtained by Friedman et al.21 for perturbations

where 608(1-1/7 The general features of Eq. (69) are qualitatively
about a self-consistent Vlasov equilibrium, f2=const.x5(HL-Y0mc2) X
G(pz-ybmebc)é(Pe-Po), where all electrons have the same perpendicular
energy H1=yomc2. As indicated in the introduction, however, Eq.

(69) differs in detail as do the corresponding stability results.

For example, the last term on the right-hand side of Eq. (69) is

proportional to Bg(m-kvb)2/3, instead of Bg(wz-kzcz)/Z as obtained in
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Ref. 21. Therefore, depending on the region of parameter space, the
stability properties obtained from Eq. (69) can differ considerably
from the results obtained in previous analyses of the cyclotron maser
instability.21 Moreover, the dispersion relation in Eq. (63) predicts
instability for a very narrow range of k-values, whereas previous
studie321 have not been able to identify the range of unstable k values
in a consistent manner.

Finally, the necessary and sufficient condition for Eq. (69) to
have unstable solutions (Imw>0) is given by
vcz [Jl(GOnRO/Rc) ;
YOmei L RcJZ(aOn) ;
which is qualitatively similar to the result obtained by Sprangle

(70)

and Drobot10 for a non-self-consistent equilibrium slab configuration.

B. Numerical Analysis of Dispersion Relation

In this section we make use of the dispersion relation (57)
to carry out a numerical investigation of stability properties. 1In
this regard, no a priori assumption is made that the beam is very tenuous
(as in Sec. IV.A). However, use is made of the fact that the narrow-
band of unstable k values satisfies [kc-me|<<c/R0. Expanding the
logarithm in Eq. (57), and evaluating k, p2, and b++b_ at (w,k)=
(mo,ko) [Eq. (66)], the dispersion relation (57) can be approximated by
v (“'kovb)
wg kg ybyoRé (e ¥y =0/ 1)

2
Ciiks EQ (w-kOVb) :
3 (m-kOVb-mc/Yb)

B2 (b_+b ) +(umug) [-g—w- (b_+b +))

(71)

where ﬁziwglcz-kg, and f>_+f)+5[b_+b+]m K is defined by Eq. (B.3).
0’0

e —
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The growth rate w,=Imw and real oscillation frequency mrsRew have

i
bee calculated numerically from Eq. (71) for a broad range of system
parameters a/Ro, Rc/Ro, v, Bb and 80. For Rc/RO corresponding to
ﬁ_+ﬁ+=0, we have Taylor expanded (b_+b+) about w=w,, approximating

(b_+b,) in leading order by (b_+b+)-(w—w0)[d(b_+b+)/dm]w For

K.
0’70
present purposes, to illustrate the influence of the geometric configuration
on stability behavior, we calculate the normalized magnetic wave admittances

B+. Shown in Fig. 4(a) is a plot of B++ﬁ_ versus RC/R , for Bo=0.2,

8,=0.143 and a/R;=0.1. It is evident from Fig. 4(a) that b_+b =0 for
Rc/R0=2.18 and RC/R0=3.75, which corresponds to the TE mode dispersion
relation without beam-produced modifications. Figure 4(b) shows a plot
of the normalized growth rate mifdx versus Rc/R0 obtained from Eq. (71)
for v=0.001 and parameters otherwise identical to Fig. 4(a). Two
important features are noteworthy from Fig. 4. First, for a low beam den-
sity (vé0.00l), the maximum growth rate occurs at the value of Rc/R0
for which B_+B+ is equal to zero. For example, in Fig. 4(b), the
system is most unstable at RC/RO=2.18. Second, for a low beam den-
sity, the system is unstable only in the range where ﬁ_+€+go [compare
Figs. 4(a) and 4(b)].

Shown in Fig. 5(a) is a plot of (ﬁ_+ﬁ+) versus Rc/RO for BO=0.4,
Bb-0.286 and a/R0=0.2. Also shown in Fig. 5(b) are plots of the
normalized Doppler shifted real frequency Re(Q/wc)=(wr-ka-wc/Yb)/wc
and growth rate mi/wc versus RC/R0 for v=0.001 and parameters otherwise
identical to Fig. 5(a). Note that Re(Q/wc) is plotted only for the
range of RC/R0 corresponding to instability. Evidently, for the low
beam density in Fig. 5, the stability properties are qualitatively
similar to those in Fig. 4. However, it is also evident from

Figs. 4(b) and 5(b) that the growth rate increases rapidly as Bo is

e
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increased. Moreover, we note from Fig. 5(b) that Reﬂ/wc assumes
a maximum value (0.019) at Rc/Ro-2.375 and decreases rapidly to zero
when Rc/RO is increased.

We conclude this section by emphasizing that stability properties
also exhibit a sensitive dependence on beam density. This is illustrated
in Fig. 6 where the normalized growth rate wi/wc is plotted versus
Rc/RO for two different values of v, and parameters otherwise identical
to Fig. 5(a). For intermediate or high beam densities (v20.01),
the maximum gr?wth rate no longer coincides with values of Rc/RO
for which (B_+$+)-O. For example, in Fig. 6, the maximum growth rate
occurs for RC/R0-2.45 when v=0.01, and for Rc/Rc=2°51 when v=0.1.
Evidently, the value of Rc/RO corresponding to maximum growth rate
is a slowly increasing function of beam density. However, the value
of the maximum growth rate increases relatively rapidly with
increasing beam density. We also note, for high beam densities,

that the system can be unstable even for negative values of (€_+€+)

(Fig. 6). This is not the case for low beam densities (Fig. 4).

e cmap e




sl
s i

26 g iy i

s e AR A S

d
3

28
V. CONCLUSIONS

In this paper we have formulated a self-consistent theory of the
cyclotron maser instability. The stability analysis was carried out
for an infinitely long hollow beam propagating parallel to a uniform
magnetic field Boéz, within the framework of the linearized Vlasov-
Maxwell equations. The equilibrium configuration and basic assumptions
were summarized in Sec. II.A. In Sec. II.B, equilibrium properties
were calculated for the choice of electron distribution function in
which ﬁll electrons have the same value of canonical angular momentum
(Po) and the same value of energy (Yomcz) in a frame of reference
moving with axial velocity Bye [Eq. (8)]. Stability properties for
azimuthally symmetric perturbations were examined in Secs. III and IV.
As shown in Sec. III.B, the TE mode corresponds to the most unstable
perturbation. Moreover, the analysis in Appendix C predicted that
instability occurs for a very narrow range of k values satisfying
Ikc-Bbm|<<c/R0. A detailed numerical analysis of the approximate
dispersion relation (71) was presented in Sec. IV.B. One of the most
important conclusions of this study is that the geometric configuration
(ﬁ_+8+) has a large influence on stability behavior, particularly
when the beam density is low. Moreover, the maximum growth rate

increases relatively rapidly with increasing beam density.
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APPENDIX A

EVALUATION OF PERTURBED AZIMUTHAL ELECTRIC FIELD

s g
——"_

From Eqs. (22) and (28), we find that

Lo =23 (). (a.1)

Since the perturbed azimuthal current density is even function of p

[Eq. (52)], it is straightforward to show that |

bt e i e

- 1 A A =
Bk(Ro) =7 [By (R)+B (RD]T . (a.2)

Making use of Eqs. (29), (38), (A.1) and (A.2), we obtain

~ ~ 1 2 2
Ro(db/dr)g /8(Re) = 3 PR (b, b)) (A.3)
From Eq. (A.3), it follows that
|R0<d$/dr)R0|;,0[$<no)1 , (A.4)

provided lszg(b+-b_)|§1.

SRS S N
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APPENDIX B

EVALUATION OF MAGNETIC WAVE ADMITTANCES

In this section, we obtain expressions for the wave admittances
% q at the boundaries of a hollow electron beam in a cylindrical waveguide.
| Since the perturbed current density vanishes in the vacuum region
outisde the beam, Maxwell's equation in this region can be expressed

as

3

oo rd+ pz)ﬁzk(r)-o (B.1)

e

&,
or

where pz-mzlcz-kz. In obtaining Eq. (B.l), use has been made of Egs.

(29) and (A.1). The solution to Eq. (B.l) is given by

AJO(pr)+BNo(pr) s R2

CJo(pr) > 0<r<R1 s

<r<R_,
c

ﬁzk(r) - { (B.2)

where Jo(pr) and No(pr) are Bessel functions of the first and second
kind, respectively, and Rc is the radius of the waveguide (Fig. 1).

In Eq. (B.2), the constants A, B, and C are related by Eq. (28) and

the boundary condition [(alar)ﬁzk(r)]R =0. After some straightforward
c
algebra, the magnetic wave admittances defined in Eq. (38) can be

expressed as
* R,p J; (PRON; (pRc)-Jl(pRc)Nl(pRz)

b ---L. _J_OER_]‘Z-

(B.3)

where Rl and R2

made of dJo(x)/dx--Jl(x) and dNO(x)/dx--Nl(x). Closed expressions for the

are the inner and outer radii of the beam, and use has been

o e o ade Soas S og T

electric wave admittances dt [Eq. (37)] can be obtained in a similar manner17

but are not required in the TE mode stability analysis in Sec. IV.
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APPENDIX C

NYQUIST STABILITY ANALYSIS FOR PERTURBATIONS WITH k*Bbm/c

In this section, we make use of the Nyquist method to obtain
necessary and sufficient conditions for instability from the TE mode
dispersion relation [Eq. (57)].15’26 The analysis 1is carried out

for perturbations with the axial wavenumber k satisfying

q-krsbw/c#O . (c.1)
|

Consistent with Eq. (47), for present purposes we approximate w=ka+m /Yb
in the definitions of q [Eq. (C.1)], 2-mzlc -k ,» and the magnetic wave

admittances b, [Eq. (B.3)]. Assuming (b_+b+)#0, and defining
2=Q/Bqc=(w=kV, +uv_/v,)/Byac ,

s=qcy, /Bgw ., » (C.2)

2022
a=c p RoYon/ N ’

it is straightforward to express the TE mode dispersion relation in

(57) as

z+1

D(z)= (z-s)Zn( 1

) 2= 20 d% (c.3)

where the complex variable z is defined in Eq. (C.2). Note from
Eq. (C.3) that the dispersion relation is an even function of q so that
stability properties do not depend on the sign of q. Therefore, we
assume q>0 without loss of generality.

Nyquist plots of the function D(z) defined in Eq. (C.3), which

map the upper half z plane (contour ') onto the complex D plane
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(contour I''), enable us to study the stability properties predicted by

w“..,.n..«,~n«m 3

- Eq. (C.3) [Figs. 7 and 8]. Figures 7(a) and 8(a) are plots of contour
| I' for s<1 and s>1, respectively. Branch cuts originating from the
branch points at z=+1 must be introduced, as shown in Figs. 7(a) and

: i 8(a), to make the function D(z) single valued. Plots of D(z) are
shown in Fig. 7(b) for s<l, and in Fig. 8(b) for s>1. 1In obtaining
the contour I'' in Figs. 7(b) and 8(b), use has been made of the
definition nz=inr+ié (-mw<6<m), where z=rexp{if}.

The Nyquist analysis indicates that the system is stable (ImQ<0)

v
—

provided the contour I' in the complex D plane does not enclose the
point -2(b_+b+)q2a. Therefore, it follows from Figs. 7(b) and 8(b)

that a necessary condition for instability is

s<1l . (C.4)

Moreover, from Fig. 7(b), we also note that
0<(b_+b,)q a1l (C.5)

is a necessary condition for instability. Since q2a>0, we conclude
that (b_+b+)>0 is required for instability, which is consistent

with the results obtained from a numerical analysis of the dispersion
relation (see Fig. 4). Combining the two inequalities in Eqs. (C.4)
and (C.5), and making use of Eq. (C.2), it is straightforward to show

for typical beam parameters that

JEPURP—S———————

|a|=lk-8,0/c|<<1/R, (C.6)

is required for instability, which corresponds to a very narrow

bandwidth in k-space. The inequality in Eq. (C.6) can also be

demonstrated for the case (b_+b,)~0, by Taylor-expanding (b_+b+)




about u-kvbmc/yb, keeping first-order terms in Q, and making use of

{d(b +b,)/dw] >0.
- 4 kvb-mclyb

T — g — =
- B
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FIGURE CAPTIONS

Equilibrium configuration and coordinate system.

Electron density [Eq. (17)] and temperature profiles [Eq. (21)].
The straight lines m=ka+mc/yb and mskc/Bb intersect at (wo,ko)s
(mcyb, Bbmcyb/c). The curve m=(c2k2+agnc2/R§)1/2 passes

through (wo,ko) provided aonc/Rcsmc.

(a) Plot of sum of magnetic wave admittances (b_+b+) (Appendix B)

versus Rc/R , for Bo=0.2, sb=0.143 and a/Ro-O.l. (b) Plot of

" normalized growth rate wi/wC versus Rc/R0 [Eq. (68)], for v=0.001

and parameters otherwise identical to Fig. 4(a).
(a) Plot of sum of magnetic wave admittances (b_+b+) (Appendix B)

versus RC/RO’ for 80-0.4, Bb-0.286 and a/Ro-O.Z. (b) Plot of

the normalized Doppler shifted real frequency ReQ/mcsRe(w—ka-mc/Yb)/mc

and growth rate wi/mc versus RC/R0 [Eq. (68)], for v=0.001 and
parameters otherwise identical to Fig. 5(a).

Plot of normalized growth rate wi/mc versus RC/R0 [Eq. (68)1,
for v=0.01 and v=0.1, and parameters otherwise identical to

Fig. 5(a).

Map of upper-half z plane (contour I') onto the D plane (contour T'')

for s<l1.

Map of upper-half z plane (contour T') onto the D plane (contour T')

for s>1.
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